The iron-sulfur cluster composition of Escherichia coli nitrate reductase.

نویسندگان

  • M K Johnson
  • D E Bennett
  • J E Morningstar
  • M W Adams
  • L E Mortenson
چکیده

Nitrate reductase from Escherichia coli has been investigated by low-temperature magnetic circular dichroism and electron paramagnetic resonance (EPR) spectroscopies, as well as by Fe-S core extrusion, to determine the Fe-S cluster composition. The results indicate approximately one 3Fe and three or four [4Fe-4S]2+,1+ centers/molecule of isolated enzyme. The magnetic circular dichroism spectra and magnetization characteristics show the oxidized and reduced 3Fe and [4Fe-4S] centers to be electronically analogous to those in bacterial ferredoxins. The form and spin quantitation of the EPR spectra from [4Fe-4S]1+ centers in the reduced enzyme were found to vary with the conditions of reduction. For the fully reduced enzyme, the EPR spectrum accounted for between 2.9 and 3.5 spins/molecule, and comparison with partially reduced spectra indicates weak intercluster magnetic interactions between reduced paramagnetic centers. In common with other Fe-S proteins, the 3Fe center was not extruded intact under standard conditions. The results suggest that nitrate reductase is the first example of a metalloenzyme where enzymatic activity is associated with a form that contains an oxidized 3Fe center. However, experiments to determine whether or not the 3Fe center is present in vivo were inconclusive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The high potential iron-sulfur center in Escherichia coli fumarate reductase is a three-iron cluster.

The fumarate reductase complex and soluble enzyme from Escherichia coli have been investigated by low temperature magnetic circular dichroism and electron paramagnetic resonance spectroscopies. The results confirm the presence of one [2Fe-2S] cluster and show that the high potential iron-sulfur center is a 3Fe cluster of the type found in bacterial ferredoxins. Since the 3Fe cluster is present ...

متن کامل

Characterization by electron paramagnetic resonance of the role of the Escherichia coli nitrate reductase (NarGHI) iron-sulfur clusters in electron transfer to nitrate and identification of a semiquinone radical intermediate.

We have used Escherichia coli cytoplasmic membrane preparations enriched in wild-type and mutant (NarH-C16A and NarH-C263A) nitrate reductase (NarGHI) to study the role of the [Fe-S] clusters of this enzyme in electron transfer from quinol to nitrate. The spectrum of dithionite-reduced membrane bound NarGHI has major features comprising peaks at g = 2.04 and g = 1.98, a peak-trough at g = 1.95,...

متن کامل

Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity.

Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange ...

متن کامل

Thioredoxin reductase system mediates iron binding in IscA and iron delivery for the iron-sulfur cluster assembly in IscU.

IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes. Previously, IscA was characterized as an alternative iron-sulfur cluster assembly scaffold, as purified IscA can host transient iron-sulfur clusters. However, recent studies indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in a proposed sc...

متن کامل

Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli.

Biogenesis of iron-sulfur clusters requires a concerted delivery of iron and sulfur to target proteins. It is now clear that sulfur in iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. However, the specific iron donor for the iron-sulfur cluster assembly still remains elusive. Previous studies showed that IscA, a member of the iron-sulfur cluster assembly machinery in E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 9  شماره 

صفحات  -

تاریخ انتشار 1985